Science Department Curriculum Guide

Biology – AP

Course Description

AP Biology is equivalent to a 1st year college introductory biology course. The course will cover a range of topics from ecology to molecular genetics. A typical college course might cover a 6-8 week period but AP biology at the HS level runs for the entire school year. This allows us to more completely explore the topics at hand and often place them in a context that is useful for students.

In AP biology students will cultivate their understanding of biology through inquiry-based investigations as they explore the following topics: evolution, cellular processes, energy and communication, genetics, information transfer, ecology, and interactions. The course consists of inquiry based laboratory investigations that make up at least 25% of the course content. In these investigations students will be expected to design new and innovative experiments that further increase their understanding of the key concepts.

The AP biology course looks to strike a balance between traditional content understanding and enduring conceptual understandings focused around the big ideas of biology; evolution, energy, information storage and transfer, and systems interactions. In addition to the inquiry based labs students will participate in class discussions, lecture, and process oriented guided inquiry learning (POGIL) systems to cover the course content in a variety of methods which utilize multiple learning styles.

The AP biology curriculum also integrates several mathematical concepts and models. This generally does not go beyond algebra, geometry, and graphing skills. The inquiry based labs will introduce students to some fundamentals in the use of mathematical analysis and the evaluation of data to assess for effect size and statistical significance.

Course Content	Science Practices		
The AP Environmental Science course is organized into nine units arranged in a logical sequence. Students will spend about 25% of instructional time engaged in hands-on, inquiry-based investigations.	 Concept Explanation: Explain biological concepts, processes, and models presented in written format. Visual Representations: Analyze visual representations of biological concepts and processes. 		
 Unit 1: Chemistry of Life Unit 2: Cell Structure and Euroction 	 Questions and Methods: Determine scientific questions and methods 		
 Unit 3: Cellular Energetics Unit 4: Cell Communication and Cell Cycle 	 Representing and Describing Data: Represent and describe scientific data. 		
 Unit 5: Heredity Unit 6: Gene Expression and Regulation 	 Statistical Analysis and Data Analysis: Perform statistical tests and mathematical calculations to 		
 Unit 7: Natural Selection Unit 8: Ecology 	analyze and interpret data. Argumentation: Develop and justify scientific		
_ one of 200067	arguments using evidence.		
Course Description			

Campbell Biology in Focus, by Urry, Cain, Wasserman, Minorsly, and Reece; published by Pearson, 2015

Hanover Public Schools

Subject: AP Biology

Units	Торісѕ	Activities May Include
Chemistry of Life Term 1 3-4 weeks	 Structure of water and hydrogen bonding Elements of life Introduction of biological macromolecules Properties of biological macromolecules Structure and function of biological molecules Nucleic acids 	Enzyme Structure and Function
Cell Structure and Function Term 1 4-6 weeks	 Cell structure: subcellular components Cell structure and function Cell size Plasma membranes Membrane permeability Membrane transport Facilitated diffusion Tonicity and osmoregulation Mechanisms of transport Cell compartmentalization Origins of cell compartmentalization 	Diffusion and Osmosis
Cellular Energetics Term 2 4-6 weeks	 Enzyme structure Enzyme catalysis Environmental impacts on enzyme function Cellular energy Photosynthesis Cellular respiration Fitness 	 Cellular respiration Photosynthesis
Cell Communication and the Cell Cycle Term 2 2-4 weeks	 Cell communication Introduction to signal transduction Changes to signal transduction pathways Cell cycle Regulation of cell cycle 	 Cell pathway project

Hanover Public Schools

Units	Topics	Activities May Include
Heredity Term 2 2-4 weeks	 Meiosis Meiosis and genetic diversity Mendelian genetics Non-Mendelian genetics Environmental effects of phenotype Chromosomal inheritance 	 Mitosis and Meiosis Stop-go animation
Gene Expression and Regulation Term 3 4-6 weeks	 DNA and RNA structure Replication Transcription and RNA processing Translation Regulation of gene expression Gene expression and cell specialization Mutations Biotechnology 	 Bacterial transformation Genetic fingerprinting
Evolution Term 3 4-6 weeks	 Introduction to evolution Natural selection Artificial selection Population genetics Hardy-Weinberg equilibrium Evidence of evolution Common ancestry Continuing evolution Phylogeny Speciation Extinction Variation of populations Origins of life on Earth 	 Artificial Selection BLAST lab
Ecology Term 4 4 weeks	 Responses to the environment Energy flow through ecosystems Population ecology Effects of density on populations Community ecology Biodiversity Disruptions to ecosystems 	Energy Dynamics